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Abstract

The solution of the problem of a penny!shaped crack in an inhomogeneous material with elastic coe.cients
which are varying continuously along the direction perpendicular to the crack is examined in this paper[ We
studied the problem for an inhomogeneous material which satis_es the conditions of either torsional
deformation and normal extension[ A series form solution to the problem is proposed and analytical
expressions for the _rst two terms of the series are obtained by using a Hankel transform technique[ In the
solution a homogeneous body is chosen as the reference so that inhomogeneous quantities are treated as
being perturbed from the zero|s reference solutions[ Closed form expressions for the relevant stress intensity
factors and the crack energy are derived and speci_c cases of the problem are also considered[ Þ 0888
Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The problems determining the state of stress in the vicinity of penny!shaped cracks in a non!
homogeneous solid have been discussed by "Kassir and Sih\ 0864#[ Solutions of some mixed
boundary problems in non!homogeneous materials have been solved by some authors "Kassir\
0861 ^ Dhaliwal and Singh\ 0867 ^ Clements et al[\ 0867 ^ Ergu�ven\ 0875#[ Ang and Clements "0876#
considered the problem for an inhomogeneous material which satis_es the conditions of either an
antiplane and plane strain by using the series form solution "Kamke\ 0833#[ Penny!shaped crack
problems in an inhomogeneous elastic material under torsion have been solved by Ang "0876# and
the present authors "Ergu�ven and Gross "0882#[ Gao "0880# showed that the perturbation formulae
can be derived from the potential energy bounds for nonhomogeneous materials\ and applied the
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perturbation algorithm to calculate the stress intensity factors for several crack problems involving
spatially varying material moduli[

Recently\ Craster and Atkinson "0883# studied some mixed boundary value problem for inhomo!
geneous elastic materials where the shear modulus varies with respect to one space variable as
"a¦b=z=#n\ where n is not necessarily an integer[ They use Fourier transforms and the WienerÐ
Hopf technique to solve antiplane and plane strain problems[

All the above authors have considered crack problems in which non!homogeneity is unidi!
rectional and crack is on the plane of the material symmetry[ As indicated in all the studies\ as
long as the crack tip is embedded in a homogeneous medium\ the stress state around the crack tip
would have the standard square!root singularity and the conventional methods of fracture mech!
anics would be applicable[ But for a class of non!homogeneity\ the power of stress singularity is
real and not equal to 0:1[ Although this result is physically acceptable\ it is not readily suitable for
conventional fracture mechanics applications[ Also in this case the coe.cient of stress intensity
can no longer be interpreted as a stress intensity factor in the usual way[

In this paper\ we studied the problem of determining the state of stress in an in_nite non!
homogeneous elastic medium containing a penny!shaped crack under torsional "Mode III# and
normal stresses "Mode I#[ The shear modulus of the material is assumed to vary slightly in the
normal direction to the crack\ while Poisson|s ratio remains constant throughout the material[ The
spatial variation of the shear modulus m is assumed to be of the form m � m9¦of "z# and that the
variation of the shear modulus is slow along the direction normal to the crack surface[ The shear
modulus changes according to the parameters such that o ð 0 and f is a given function di}erentiable
of z[ A series form solution to the problem are proposed and the _rst two terms of the series are
obtained by using the Hankel transform technique[ For simple variation of shear modulus\ the
close form analytical solutions are given both problems and the dependence to the material
constants on the singularity are obtained[

1[ Statement and formulation of the problem

We will use a cylindrical coordinate system "r\ q\ z# with the z axis perpendicular to the crack
plane[ The displacement equation of equilibrium for a non!homogeneous\ isotropic and elastic
solid is given by

m9 = 9u¦"l¦m#9 div u¦"9u¦"9u###T9m¦"div u#9l � 9 "0#

where l and m are the Lame� parameters and u is the displacement vector[ The clear expression of
this equation in cylindrical coordinates is given in Ergu�ven "0875#[ The stresses are related to the
strains by

sij � 1meij¦ldijekk "1#

where dij is the Kronecker delta and the strains eij are de_ned as

1eij � ui\ j¦uj\i "2#

where ui is Cartesian components of displacements[ If we choose
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ur � ur"r\ z#\ uq � uq"r\ z#\ uz � uz"r\ z#\ m � m"z#\ l � constant "3#

eqn "0# can be written as

m $Sur¦
0

"0−1n#
Dre%¦DmD"ur¦uz# � 9 "4#

mSuq¦DmDuq � 9 "5#

m$91uz¦
0

"0−1n#
De%¦1Dm $Duz¦

n

"0−1n#
e%� 9 "6#

in which 91 is the Laplacian in the cylindrical coordinate given by

91 � 11:1r1¦"0:r# 1:1r¦11:1z1 "7#

and

Sur � 91ur−
ur

r1
\ Dr � 1:1r\ D � 1:1z "8#

In eqns "4# and "6#\ n is the Poisson|s ratio of the material and e is the dilatation which can be
expressed in terms of the displacement components as

e � 1ur:1r¦ur:r¦1uz:1z "09#

1[0[ Torsional stresses

The axisymmetric torsion problem has been considered by using the same method in Ergu�ven
and Gross "0882# and here it is given short formulation[ The Navier equilibrium equation for
torsion problem is given in eqn "5#[ The spatial variation of the shear modulus m is assumed to be
of the form

m � m9¦of "z# "00#

where m9 is a constant\ o is a constant parameter such that o ð 0 and f is a given function is
continuous and di}erentiable[ Substituting eqn "00# into eqn "5#\ we obtain

m91uq¦oDfDuq � 9 "01#

Proposing a solution to eqn "01# in the form

uq � s
�

9

onun"r\ z# "02#

and substituting eqn "02# into eqn "01# and expanding the resulting expression in a power series\
then equating the coe.cient same power of o to zero\ we obtain

91u9 � 9 "03#

and recurriance relation for the other solutions
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m991un � −ðDfDun−0¦f "z#91un−0Ł\ n × 9 "04#

The non!zero components of the stress tensor are given by

sqz � mDuq\ srq � mrDr"ur:r# "05#

From eqns "02# and "05# we obtain

sqz � s9
qz¦os0

qz¦O"o1# "06#

where

s9
qz � m9Du9 "07#

s0
qz � m9Du0¦f"z#Du9 "08#

1[1[ Axisymmetric normal stresses

Let the penny!shaped crack be subjected to normal tractions that vary in the radial direction
only and give rise to a stress system independent of q[ For the problem described by eqn "3#\ the
appropriate Navier equations in terms of the displacements ur and uz are given by eqns "4# and
"6#[ We choose the shear modulus as given in eqn "00#[ If we propose a solution to eqns "4# and
"6# in the form given in eqn "02#

ur � s
�

9

onu"n#
r \ uz � s

�

9

onu"n#
z "19#

then from eqn "09# we may write

e � s
�

9

one"n# "r\ z# "10#

Substituting eqns "19# and "10# into eqns "4# and "6#\ if we are interested in only the _rst two terms
of series solutions of eqn "19#\ we obtain that it is only necessary to solve in the following equations\

Su9
r ¦

0
"0−1n#

Dre
9 � 9 "11#

91u9
z ¦

0
"0−1n#

De9 � 9 "12#

and

Su0
r ¦

0
"0−1n#

Dre
0 � −m−0

9 DfD"u9
r ¦u9

z # "13#

91u0
r ¦

0
"0−1n#

De0 � −1m−0
9 Df $Du9

z ¦
n

"0−1n#
e9% "14#

Using eqn "1#\ stresses can be written in the following form
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sij � s9
ij¦os0

ij¦O"o1# "15#

where

s9
ij � 1m9e

9
ij¦ldije

9
kk "16#

s0
ij � 1m9e

0
ij¦fe9

ij¦ldije
0
kk "17#

1[2[ Stress intensity factors for penny!shaped crack problems

In the analysis of crack problems\ it is essential to have a knowledge of the asymptotic behaviour
of the stresses around the crack border[ The coe.cients KI\ KII\ KIII which are commonly known
as the stress intensity factor are dependent on the crack geometry\ loading conditions and non!
homogeneity parameters[ We are interested here in calculating the stress intensity factors KI\ KII

and KIII are de_ned by

KI � lim
r:a¦

ð1"r−a#Ł0:1sz"r\ z# "18a#

KII � lim
r:a¦

ð1"r−a#Ł0:1srz"r\ z# "18b#

KIII � lim
r:a¦

ð1"r−a#Ł0:1sqz"r\ z# "29#

From eqn "13#\ Ki\ i � I\ II\ III may be written as

Ki � K9
i ¦oK0

i ¦O"o1# "20#

where K9
i is de_ned by using s9

ij and K0
i is de_ned by using s0

ij in eqns "18# and "29#[
The Mode III penny!shaped crack problem in the in_nite elastic solid has been solved by the

present authors using the same method "Ergu�ven and Gross\ 0882#[ Consider the case of f"z# � k
=z=\ k is a positive constant and the shear stress on the crack surface t"r# � t9r:a\ the stress intensity
factors are

K9
III � 3t9za:2p "49#

K0
III � −

t9zak

5m9pzpG"2:1#
"42#

Neglecting O"o1# terms\ the stress intensity factor was obtained as follows ]

KIII �
3
2p

t9za 00−
oka

1pm9G"2:1#1 "43#

This result clearly shows that for this particular type of inhomogeneous material with shear
modulus which increases with =z= the stress intensity factor for a material with constant shear
modulus m9[ Furthermore\ by decreasing the value of m9\ the di}erence between these stress intensity
factors becomes more pronounced "Ergu�ven and Gross\ 0882#[
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2[ Normal stress in nonhomogeneous elastic media and Plevako|s formulation

In this section\ we consider the problem of determining the stress distribution in the vicinity of
a penny!shaped crack in an in_nite isotropic non!homogeneous material[ Poisson|s ratio n of the
material is assumed to be constant while the shear modulus varies as in eqn "00#[ Following
Plevako "0861# the governing equation can be written as

91 0
0
m

91L1−
0

0−n 091−
11

1z11L
d1

dz1 0
0
m1� 9 "21#

where L is a function which reduces to the biharmonic equation in the homogeneous case[ Stresses
and displacement can be expressed by using L function as follows ]

sz � 091−
11

1z11
1

L\ t � −091−
11

1z11
1L
1z

"22#

uz � −
0
m 091−

11

1z11
1L
1z

¦
1

1z $
0
1m 0n91L−

11L

1z1 1% "23#

We propose a solution to eqn "21# in the form

L � s
�

n�9

onLn"r\ z# "24#

By using eqns "00#\ "21# and "24# we _nd that it is necessary to solve for only two terms of the
series solution\

9191L9 � 9 "25#

and

9191L0 � q:m9 "26#

where

q � 1f ?
1

1z
91L9−

0
0−n

fý"n91L9−d1L9:d1z# "27#

Using eqns "00#\ "23# and "24#\ and assuming =of:m9= ð 0\ the normal displacement uz can be written
as

uz � u9
z ¦ou0

z ¦O"o1# "28#

where

u9
z � −

0
m9 091−

11

1z11
1L9

1z
¦

0
1m9

1

1z 0n91L9−
11L9

1z1 1 "39#
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u0
z �

0
m9 6091−

11

1z11
1L0

1z
¦

0
1m9

1

1z 0n91L0−
11L0

1z1 17−
f"z#
m9

u9
z −

f ?

1m1
9 0n9

1L9−
11L9

1z1 1 "30#

Stresses may also be written by making use of eqns "22# and "24# as

sz � s9
z ¦os0

z ¦O"o1# "31#

trz � t9
rz¦ot0

rz¦O"o1# "32#

where

si
z � 091−

11

1z11Li\ "for i � 9\ 0# "33#

ti
rz � −091−

11

1z11
1Li

1z
\ "for i � 9\ 0# "34#

Consider an in_nite elastic material whose shear modulus m is given by eqn "00# with f being an
even function of z[ The solid contains a penny!shaped crack in the region 9 ³ r ³ a\ z � 9\
pressurized by symmetric normal stress sz � s9"r# and trz � 9 act on the crack[ Due to the symmetry
of the problem about z � 9 plane\ the problem described above is equivalent to the problem of
solving eqn "21# subject to the boundary conditions

trz � 9 for all values of r\ z � 9 "35#

sz � s9"r# for 9 ¾ r ³ a\ z � 9 "36#

uz � 9 for r × a\ z � 9 "37#

If we use the _rst two terms of eqn "24#\ this boundary value problem may be replaced by Problems
2[0 and 2[1 below[

Problem 2[0

Solve eqn "25# subject to

t9
rz � 9 for all values of r\ z � 9 "38#

s9
z � s9"r# for 9 ¾ r ³ a and u9

z � 9 for r × a ^ z � 9 "49#

Problem 2[1

Solve eqn "26# subject to

t0
rz � 9 for all values of r\ z � 9 "40#
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s0
z � 9 for 9 ¾ r ³ a and u0

z � 9 for r × a ^ z � 9 "41#

Solution of Problem 2[0

Now we can write from the solution satis_ed regularity condition of eqn "25#\ satisfying the
boundary condition "35# and regularity condition at in_nity as

L9"j\ z# � A"j#"0¦jz# exp"−jz# "42#

where L9 is the Hankel transform and j is the Hankel transform parameter[ Making use of eqns
"39#\ "33# and "42#

1m9u
9
z "j\ z# � −A"j#ð1"0−n#¦jzŁj2 exp"−jz# "43#

s9
z "j\ z# � A"j#j3"0¦jz# exp"−jz# "44#

and inserting the boundary conditions "49# the problem reduces to that of solving the dual integral
equations

g
�

9

jAÞ"j#J9"jr# dj � p"r#\ 9 ¾ r ³ a "45#

g
�

9

AÞ"j#J9"jr# dj � 9\ r × a "46#

where AÞ"j# � j2A"j#[
The solution of above dual integral equation may be written as "Sneddon\ 0855#

AÞ"j# �
1
p g

a

9

sin"jt# dt g
t

9

rp"r#"t1−r1#−0:1 dr "47#

and the stress intensity factor is

K9
0 �

1
p

a−0:1 g
a

9

rp"r#"a1−r1#−0:1 dr "48#

Solution of Problem 2[1

The function L0"r\ z# de_ned by

L0"r\ z# � g
�

9

jG"j\ z#J9"jr# e−jz dj "59#

is a solution of eqn "26# if the function G"j\ z# satis_es

G IV−3jG1¦3j1Gý �
A"j#j1

m9 $3f ?j¦
fý

0−n
"1n−0¦jz#% "50#

The general solution of eqn "50# is
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G"j\ z# � Gp"j\ z#¦C0¦C1z¦C2 exp"1jz#¦C3 exp"−1jz# "51#

where CYþ\ i � 0Ð3\ are arbitrary functions of j and GP"j\ z# is given by "Kamke\ 0833#

Gp"j\ z# � −e−1jz g
z

tW"j\ t# e−1jt dt¦z e1jz g
z

W"j\ t# e−1jt dt "52#

where W"j\ z# is de_ned by

W"j\ z# �
A"j#j1

m9"0−n# $1j"0−1n# g
z

f"t# dt¦"1n−0¦jz# f"z#% "53#

Since we require the displacements and stresses to vanish at in_nity\ it is necessary to set the
function C2 and C3 to zero[ The use of condition "40# yields

dGp:dz=z�9−jGp"j\ 9# � C0j−C1 "54#

If we assume that the stress s0
zz is such that

s0
zz"r\ 9# � p"r# "55#

then from eqns "33#Ð"48# and through the use of Hankel inversion theorem we obtain

C0"j# � g"j#:j3−Gp"j\ 9# "56#

where g"j# is de_ned by

g"j# � g
�

9

rp"r#J9"jr# dr "57#

From eqns "54# and "56#\ C1 is given by

C1"j# � g"j#:j2−"1Gp:1z# =z�9 "58#

Making use of eqns "30#Ð"59# and "52# we can obtain

u0
z "r\ 9# �

"n−0#
1m9 g

�

9

j $
1g"j#

j
¦X"j#¦Z"j#A"j#% J9"j\ r# dj "69#

s0
zz"r\ 9# � g

�

9

jg"j#J9"jr# dj "60#

where

X"j# � G1p−2jGýp "61#

Z"j# � −1f"9#j2:m9¦
"0−1n# f ?"9#

"0−n#m9

j1 "62#

The task now is to determine g"j# by using the remaining boundary condition\ namely condition
"41#[ Making use of eqns "69# and "60#\ the condition "41# yields
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g
�

9

jg"j#J9"jr# dj � p"r# ^ r ³ a "63#

g
�

9

ð1g"j#¦jX"j#¦jZ"j#A"j#ŁJ9"jr# dj � 9 ^ r × a "64#

By de_ning the new function as

C"j# � 1g"j#¦jX"j#¦jZ"j#A"j# "65#

The solution of above dual integral equation for new unknown C"j# is given by "Sneddon\ 0855#

C"j# �
0
p g

a

9

sin"jt# dt g
t

9

rq"r#"t1−r1#−0:1 dr "66#

where\ with p"r# � 9\

q"r# � g
�

9

jðjX"j#¦jZ"j#A"j#ŁJ9"jr# dj "67#

From eqn "66# with integration by parts and eqn "60# we obtain

K0
I � −

1
p

F"a#

zj
−

0
1

lim
r:a

"r−a# g
�

9

j1 ðX"j#¦Z"j#A"j#ŁJ9"jr# dj "68#

where

F"a# � g
a

9

rq"r#"a1−r1#−0:1 dr "79#

Example ] Uniform pressure

If a uniform pressure s9"r# � −s9 "constant# acts on the crack then eqn "47#

AÞ"j# � a2:1s9"1pj#−0:1J2:1"aj# "70#

and from eqn "48# the stress intensity factor K9
0 is

K9
I �

1
p

s9za "71#

We now consider the case where shear modulus m is given by

m"z# � m9¦okz "72#

where k is a positive constant[ From eqns "52#\ "53# and "72# and di}erentiating\ we obtain



M[E[ Er`u�ven\ D[ Gross:International Journal of Solids and Structures 25 "0888# 0758Ð0771 0768

X"j# �
2k
m9

j1A"j# "73#

Taking f"9# � 9 and f?"9# � k into account\ from eqn "62# we obtain

Z"j# �
"0−1n#k
"0−n#m9

j1 "74#

Substituting eqns "70#\ "73# and "74# into eqns "70# and "79# we obtain the stress intensity factor
K0 as follows ]

K0
I � −

1ka2:1

p1m9

s9 02¦
1n¦0
0−n 1 "75#

Making use of eqns "18a#\ "71# and "75#\ in the case of O"o1#\ the stress intensity factor is given by

KI �
1
p

s9za $0−
2oka
pm9

−
oka
pm9

"1n−0#
"0−n# % "76#

We can calculate the crack surface displacement by using eqn "51#[ From the solution of Problem
2[0 for the constant pressure[ We can obtain from eqn "43# and "47# the surface displacement as

u9
z "r\ 9# � ð1"0−n#s9:"pm9#Ł"a1−r1#0:1 "77#

The second term in eqn "28# may be obtained from the solution Problem 2[1[ Using the eqn "69#
and substituting eqns "47#\ "61#\ "62# and "66# we obtain

u0
z "r\ 9# � −u9

z "r\ 9#
ka
pm9

"1−n#
"0−n#

"78#

As a result the crack surface displacement may be written as

uz"r\ 9# � u9
z "r\ 9# $0−

oka
pm9

"1−n#
"0−n#% "89#

To calculate the elastic energy W expended in forming the crack\ use is made of the formula

W � 1 g
a

9

p"r#uz"r\ 9# dr "80#

If we substitute the form "076# for uz"r\ 9#\ in the case in which p"r# � s9 this gives

W � ð3"0−n#s1
9a

2:2m9Ł $0−
oka
pm9

"1−n#
"0−n#% "81#

The energy release rate may also be written as
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G � ð3"0−n#s1
9a:m9pŁ $0−

oka
pm9

"1−n#
"0−n#% "82#

3[ Results and discussion

The stress intensity factor "20# for the normal extension of penny!shaped crack indicates behav!
iour which is qualitatively consistent with the corresponding result "Kassir\ 0861 ^ Ergu�ven\ 0875 ^
Ergu�ven and Gross\ 0882 ^ Ang\ 0876#[ As is well known the stress intensity factors for the plane
case and the penny!shaped crack di}er with the constant 1:p in the case of homogeneous medium
and of the stress acting on the crack is constant[ If we compare our solution "76# and the results
obtained by "Ang and Clements\ 0876# for the plane case\ we can see that the results di}er with
the constant 1:p as that is the homogeneous case[

The stress intensity factor for the penny!shaped crack in a material with variable shear modulus
is less than the corresponding factor for constant shear modulus m9 for o × 9[ As is seen easily the
magnitude of di}erence between the homogeneous and inhomogeneous stress intensity factors
decrease as m9 increases[

In homogeneous spaces the stress intensity factor is independent of m9 and is given in eqn "71#\
whereas the crack surface displacement is inversely proportional to m9 as seen in eqn "77#[ In the
homogeneous case the stress intensity factor is dependent of m"9# � m9 and less than the cor!
responding factor for a material with shear modulus m9 for o × 9[ The magnitude of these two
stress intensity factors decreases as m9 increases[ From eqn "89# it is seen that the crack surface
displacement uz"r\ 9# for the inhomogeneous medium is less than that for the homogeneous medium
having the modulus m"9# � m9[ Since the stress intensity factor is related to the magnitude of the
crack surface displacement derivative\ it would\ therefore be\ expected that the stress intensity
factor for the inhomogeneous medium would be smaller than 1s9za:p\ the value for the cor!
responding homogeneous medium[

It can be pointed out from eqn "76# that the stress intensity factor is still related to the
inhomogeneity parameters in the case of incompressible materials[ Since for compressible materials
Poisson|s ratio n satis_es 9 ³ n ³ 0:1\ from eqn "76# the magnitude of the di}erence between the
stress intensity factors for the homogeneous and inhomogeneous materials is bounded above by
2s9oka2:1:pm9 and below by 1s9oka2:1:pm9[

We have evaluated the stress intensity factor for some values of o and n[ Table 0 shows the stress
intensity factor for di}erent o and n � 9[1\ 9[2\ 9[3[ Also in Fig[ 0 we graphed the stress intensity
factor[

With the increasing modulus of rigidity in the neighbourhood of the crack\ the stress intensity
factors are shown to decrease in this work for o × 9 and the results seem to con_rm the results of
Kassir "0861#\ Dhaliwal and Singh "0867#\ Ang "0876#[ It is possible to obtain the case of a decrease
in the modulus of rigidity in the vicinity of the crack o ³ 9[ The stress intensity factors are increased
with the decrease m the modulus of rigidity in the neighbourhood of the crack in the case of the
constant nonhomogeneity parameters[

The results obtained in the present article are very similar those to obtained by Gao "0880#\
although methods of solutions are di}erent[
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Table 0

Kl:Kl
9

ka:pm9 9 0 1 2 3 4 5 6 7 8 09

o�9[99 0 0[99 0[99 0[99 0[99 0[99 0[99 0[99 0[99 0[99 0[99
o�9[94 n�9[9 0 9[89 9[79 9[69 9[59 9[49 9[39 9[29 9[19 9[09 9[99

n�9[4 0 9[74 9[69 9[44 9[39 9[14 9[09
o�9[09 n�9[9 0 9[79 9[59 9[39 9[19 9[99

n�9[4 0 9[69 9[39 9[09

Fig[ 0[ The mode I stress!intensity factor as a function of ka:pm9 for di}erent values of o and n[
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